Thursday, 12 March 2015

First commercial distribution of electric power

In the very early days of electricity distribution (for example Thomas Edison's Pearl Street Station), direct current (DC) generators were connected to loads at the same voltage. The generation, transmission and loads had to be of the same voltage because there was no way of changing DC voltage levels, other than inefficient motor-generator sets. Low DC voltages (around 100 volts) were used since that was a practical voltage for incandescent lamps, which were the primary electrical load. Low voltage also required less insulation for safe distribution within buildings. The loss in a cable is proportional to the square of the current, and the resistance of the cable. A higher transmission voltage would reduce the copper size to transmit a given quantity of power, but no efficient method existed to change the voltage of DC power circuits. To keep losses to an economically practical level the Edison DC system needed thick cables and local generators. Early DC generating plants needed to be within about 1.5 miles (2.4 km) of the farthest customer to avoid excessively large and expensive conductors.

Subsation

Substations generally have switching, protection and control equipment, and transformers. In a large substation, circuit breakers are used to interrupt any short circuits or overload currents that may occur on the network. Smaller distribution stations may use recloser circuit breakersor fuses for protection of distribution circuits. Substations themselves do not usually have generators, although a power plant may have a substation nearby. Other devices such as capacitors and voltage regulators may also be located at a substation.
Substations may be on the surface in fenced enclosures, underground, or located in special-purpose buildings. High-rise buildings may have several indoor substations. Indoor substations are usually found in urban areas to reduce the noise from the transformers, for reasons of appearance, or to protect switchgear from extreme climate or pollution conditions.
Where a substation has a metallic fence, it must be properly grounded to protect people from high voltages that may occur during a fault in the network. Earth faults at a substation can cause a ground potential rise. Currents flowing in the Earth's surface during a fault can cause metal objects to have a significantly different voltage than the ground under a person's feet; this touch potential presents a hazard of electrocution.

Substaion

A substation is a part of an electrical generation, transmission and distribution system. Substations transform voltage from high to low, or the reverse, or perform any of several other important functions. Between the generating station and consumer, electric power may flow through several substations at different voltage levels.
Substations may be owned and operated by an electrical utility, or may be owned by a large industrial or commercial customer. Generally substations are unattended, relying on SCADA for remote supervision and control.
A substation may include transformer to change voltage levels between high transmission voltages and lower distribution voltages, or at the interconnection of two different transmission voltages. The word substation comes from the days before the distribution system became a grid. As central generation stations became larger, smaller generating plants were converted to distribution stations, receiving their energy supply from a larger plant instead of using their own generators. The first substations were connected to only on power station, where the generators were housed, and were subsidiaries of that power station.